Гигиеническая характеристика шума. Гигиеническое нормирование шума. Влияние шума на организм
Гигиеническая характеристика шума, его нормирование и меры профилактики негативного влияния его на организм
Шумом называется беспорядочное сочетание звуков различной высоты и громкости, вызывающее неприятное субъективное ощущение и объективные изменения органов и систем.
Шум состоит из отдельных звуков и имеет физическую характеристику. Волновое распространение звука характеризуется частотой (выражается в герцах) и силой, или интенсивностью, т. е. количеством энергии, переносимой звуковой волной в течение 1 с через 1 см2 поверхности, перпендикулярной к направлению распространения звука. Сила звука измеряется в энергетических единицах, чаще всего в эргах в секунду на 1 см2. Эрг равен силе в 1 дину, т. е. силе, сообщаемой массе, весом в 1 г ускорение в 1 см2/с.
Поскольку отсутствуют способы непосредственного определения энергии звуковых колебаний, измеряется давление, производимое на тела, на которые они падают. Единицей звукового давления является бар, отвечающий силе в 1 дину на 1 см2 поверхности и равной 1/1 000 000 доле атмосферного давления. Речь обычной громкости создает давление в 1 бар.
Восприятие шума и звука
Человек способен воспринимать как звук колебания с частотой от 16 до 20 000 Гц. С возрастом чувствительность звукового анализатора уменьшается, и в преклонном возрасте колебания с частотой выше 13 000—15 000 Гц не вызывают слухового ощущения.
Субъективно частота, ее увеличение воспринимаются как повышение тона, высоты звука. Обычно основной тон сопровождается целым рядом дополнительных звуков (обертонов), возникающих благодаря колебанию отдельных частей звучащего тела. Количество и сила обертонов создают определенную окраску, или тембр, сложного звука, благодаря чему удается распознать звуки музыкальных инструментов или голоса людей.
Чтобы вызвать слуховое ощущение, звуки должны обладать определенной силой. Наименьшая сила звука, которая воспринимается человеком, называется порогом слышимости данного звука.
Пороги слышимости для звуков с различной частотой неодинаковы. Наименьшие пороги имеют звуки с частотой от 500 до 4000 Гц. За пределами этого диапазона пороги слышимости повышаются, что свидетельствует о снижении чувствительности.
Увеличение физической силы звука субъективно воспринимается как повышение громкости, однако это происходит до определенного предела, выше которого ощущается болезненное давление в ушах – порог болевого ощущения, или порог осязания. При постепенном усилении энергии звука от порога слышимости до болевого порога обнаруживаются особенности слухового восприятия: ощущение громкости звука увеличивается не пропорционально росту его звуковой энергии, а значительно медленнее. Так, чтобы ощутить едва заметное приращение громкости звука, необходимо увеличить его физическую силу на 26 %. По закону Вебера—Фехнера ощущение нарастает пропорционально не силе раздражения, а логарифму его силы.
Звуки разных частот при одной и той же физической их интенсивности ощущаются ухом не как одинаково громкие. Высокочастотные звуки ощущаются как более громкие, чем низкочастотные.
Для количественной оценки звуковой энергии предложена особая логарифмическая шкала уровней силы звука в белах или децибелах. В этой шкале за нуль, или исходный уровень, условно принята сила (10-9 эрг/см2 × сек, или 2 × 10-5 Вт/см2/с), приблизительно равная порогу слышимости звука с частотой 1000 Гц, который в акустике принимается за стандартный звук. Каждая ступень такой шкалы, получившая название бел , соответствует изменению силы звука в 10 раз. Увеличение силы звука в 100 раз по логарифмической шкале обозначается как повышение уровня силы звука на 2 бела. Приращение уровня силы звука на 3 бела соответствует увеличению абсолютной силы его в 1000 раз и т. д.
Таким образом, чтобы определить уровень силы любого звука или шума в белах, следует разделить его абсолютную силу на силу звука, принятую за уровень сравнения, и вычислить десятичный логарифм этого соотношения.
где I1 – абсолютная сила;
I – сила звука уровня сравнения.
Если выразить в белах громадный диапазон силы звука с частотой 1000 Гц от порога слышимости и (нулевой уровень) до болевого порога, то весь диапазон по логарифмической шкале составит 14 бел.
В связи с тем, что орган слуха способен различать прирост звука в 0,1 бел, то на практике при измерении звуков применяется децибел (дБ), т. е. единица в 10 раз меньшая, чем бел.
В связи с особенностью восприятия слухового анализатора звук одинаковой громкости будет восприниматься человеком от источников шума с различными физическими параметрами. Так, звук силой в 50 дБ и частотой 100 Гц будет восприниматься как одинаково громкий со звуком с силой 20 дБ и частотой 1000 Гц.
Чтобы иметь возможность сравнивать между собой различные по частотному составу звуки различной силы в отношении их громкости, введена специальная единица громкости, называемая «фон». При этом за единицу сравнения принят звук в 1000 Гц, который считается стандартным. В нашем примере звук в 50 дБ и частотой 100 Гц будет равен 20 фонам, поскольку соответствует звуку с силой 20 дБ и частотой 1000 Гц.
Уровень шума, не вызывающий вредных последствий для уха работающих, или так называемый нормальный предел громкости при частоте 1000 Гц, соответствует 75—80 фонам. При повышении частоты колебаний звука по сравнению со стандартным предел громкости должен быть снижен, так как вредное воздействие на орган слуха увеличивается с повышением частоты колебаний.
Если тоны, составляющие шум, располагаются непрерывно в широком диапазоне частот, то такие шумы называют непрерывными, или сплошными. Если при этом сила звуков, составляющих шум, примерно одинакова, такой шум называют белым по аналогии с «белым светом», характеризующимся сплошным спектром.
Определение и нормирование шумов проводятся обычно в частотной полосе, равной октаве, полуоктаве или трети октавы. За октаву принимают диапазон частот, в которой верхняя граница частоты вдвое больше нижней (например, 40—80, 80—160 и т. д.). Для обозначения октавы обычно указывают не диапазон частот, а так называемые среднегеометрические частоты. Так, для октавы 40—80 Гц среднегеометрическая частота – 62 Гц, для октавы 80—160 Гц – 125 Гц и т. д.
По спектральному составу все шумы делят на 3 класса.
Класс 1.Низкочастотные (шумы тихоходных агрегатов неударного действия, шумы, проникающие сквозь звукоизолирующие преграды). Наибольшие уровни в спектре расположены ниже частоты 300 Гц, за ним следует понижение (не менее чем на 5 дБ на октаву).
Класс 2.Среднечастотные шумы (шумы большинства машин, станков и агрегатов неударного действия). Наибольшие уровни в спектре расположены ниже частоты 800 Гц, и далее опять понижение не менее чем на 5 дБ на октаву.
Класс 3.Высокочастотные шумы (звенящие, шипящие, свистящие шумы, характерные для агрегатов ударного действия, потоков воздуха и газа, агрегатов, действующих с большими скоростями). Наименьший уровень шума в спектре расположен выше 800 Гц.
1) широкополосные с непрерывным спектром более 1 октавы;
2) тональные, когда интенсивность шума в узком диапазоне частот резко преобладает над остальными частотами.
По распределению звуковой энергии во времени шумы подразделяются:
1) постоянные, уровень звука которых за 8-часовой рабочий день изменяются во времени не более чем на 5 дБ;
2) непостоянные, уровень звука которых за 8-часовой рабочий день изменяются более чем на 5 дБ.
Непостоянные шумы подразделяются на:
1) колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;
2) прерывистые, уровень звука которых ступенчато изменяются (на 5 дБ и более), причем длительность интервалов с постоянным уровнем составляет 1 с и более;
3) импульсные, состоящие из одного или нескольких сигналов длительностью менее 1 с каждый, при этом уровень звука изменяется не менее чем на 7 дБ.
Если после воздействия шума того или иного тона чувствительность к нему понижается (порог восприятия повышается) не более чем на 10—15 дБ, и восстановление ее происходит не более чем за 2—3 мин, следует думать об адаптации. Если изменение порогов значительно, и длительность восстановления затягивается, это свидетельствует о наступлении утомления. Основной формой профессиональной патологии, вызываемой интенсивным шумом, является стойкое понижение чувствительности к различным тонам и шепотной речи (профессиональная тугоухость и глухота).
Влияние шума на организм
Весь комплекс нарушений, развивающийся в организме при действии шума, можно объединить в так называемую шумовую болезнь (проф. Е. Ц. Андреева-Галанина). Шумовая болезнь – это общее заболевание всего организма, развивающееся в результате воздействия шума, с преимущественным поражением центральной нервной системы и слухового анализатора. Характерной особенностью шумовой болезни является то, что изменения в организме протекают по типу астеновегетативного и астеноневротического синдромов, развитие которых значительно опережает нарушения, возникающие со стороны слуховой функции. Клинические проявления в организме под влиянием шума подразделяются на специфические изменения в органе слуха и неспецифические – в других органах и системах.
Регламентация шума
Регламентация шума проводится с учетом его характера и условий труда, цели и назначения помещений, сопутствующих вредных производственных факторов. Для гигиенической оценки шума пользуются материалами: СН 2.2.4/2.1.8.5622-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».
Для постоянного шума нормирование производится в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. Для ориентировочной оценки допускается измерять в дБА Преимущество измерения шума в дБА заключается в том, что позволяет определять превышение допустимых уровней шума без спектрального анализа его в октавных полосах.
При частотах 31,5 и 8000 Гц шум нормируется на уровне соответственно 86 и 38 дБ. Эквивалентный уровень звука в дБ(А) составляет 50 дБ. Для тонального и импульсного шума он на 5 дБ меньше.
Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБ, а для импульсного шума максимальный уровень звука более 125 дБ.
В отдельных отраслях производства применительно к профессиям нормирование ведется с учетом категории тяжести и напряженности. При этом выделяют 4 степени тяжести и напряженности, учитывая эргономические критерии:
1) динамическую и статическую мышечную нагрузку;
2) нервную нагрузку – напряжение внимания, плотность сигналов или сообщений в течение 1 ч, эмоциональное напряжение, сменность;
3) напряжение анализаторной функции – зрение, объем оперативной памяти, т. е. число элементов, подлежащих запоминанию в течение 2 ч и более, интеллектуальное напряжение, монотонность работы.
При малой напряженности, а также легкой и средней тяжести труда шум регламентируется на уровне 80 дБ. При той же напряженности (малой), но при тяжелой и очень тяжелой форме труда он на 5 дБ меньше. При умеренно напряженном труде, напряженном и очень напряженном шум нормируется соответственно на 10 дБ меньше, т. е. 70, 60 и 50 дБ.
Степень потери слуха устанавливается по величине потери слуха на речевых частотах, т. е. по частоте 500, 1000 и 2000 Гц и на профессиональной частоте 4000 Гц. При этом выделяют 3 степени снижения слуха:
1) легкое снижение – на речевых частотах снижение слуха происходит на 10—20 дБ, а на профессиональных – на 60 ± 20 дБ;
2) умеренное снижение – на речевых частотах снижение слуха на 21—30 дБ, а на профессиональных – на 65 ± 20 дБ;
3) значительное снижение – соответственно на 31 дБ и более, а на профессиональных частотах на 70 ± 20 дБ.
Действие шума на организм человека. Нормирование и гигиеническая оценка шумов
Шум – беспорядочное сочетание звуков различной частоты и интенсивности; совокупность звуков различной интенсивности и частоте звуков беспорядочно изменяющихся во времени
Характер распространения колебательного движения в среде называется звуковой волной, а область среды, в которой она распространяется, – звуковым полем.
Основными источниками производственных шумов, формирующих шумовой режим в рабочей зоне и оказывающих определенное влияние на уровни шума прилегающих жилых районов, являются металле- и деревообрабатывающее оборудование, энергетические и вентиляционные установки, внутризаводской транспорт и др.
Постоянный шум — шум, уровень звука которого за 8-часовой рабочий день или рабочую смену изменяется во времени не более чем на 5 дБА при измерениях на стандартизованной временной характеристике измерительного прибора «медленно».
Непостоянный шум — шум, уровень звука которого за 8-часовой рабочий день или рабочую смену изменяется во времени более чем на 5 дБА при измерениях на стандартизованной временной характеристике измерительного прибора «медленно». Непостоянный шум разделяют на колеблющийся, прерывистый и импульсный.
Колеблющийся шум — шум, уровень звука которого непрерывно изменяется во времени.
Прерывистый шум — шум, уровень звука которого изменяется во времени ступенчато (на 5 дВА и более), при этом уровни звука, измеренные на стандартизованных временных характеристиках «импульс» и «медленно», отличаются менее чем на 7 дБА.
Импульсный шум — шум, состоящий из одного или нескольких звуковых сигналов, для которых уровни звука, измеренные на стандартизованных временных характеристиках «импульс» и «медленно», отличаются на 7 дБА и более.
Широкополосный шум обладает непрерывным спектром более одной октавы, тональный (дискретный) содержит в спектре выраженные дискретные тона (частоты, уровень звука на которых значительно выше уровня звука на других частотах). Шум реактивного самолета —■ широкополосный шум, шум дисковой пилы — тональный (в спектре шума имеется ярко выраженная частота с доминирующим уровнем звука).
Механические шумы возникают по причинам наличия в механизмах инерционных возмущающих сил, соударения деталей, трения и др. Аэродинамические шумы возникают в результате движения газа, обтекания газовыми (воздушными) потоками различных тел. Аэродинамический шум возникает при работе вентиляторов, воздуходувок, компрессоров, газовых турбин, выпусков пара и газа в атмосферу и т.д. Гидравлические шумы возникают вследствие стационарных и нестационарных процессов в жидкостях.
Электромагнитные шумы возникают в электрических машинах и оборудовании, использующих электромагнитную энергию.
Шум определяется как совокупность различных по силе и частоте звуков, возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).
Воздействие шума на человека проявляется от субъективного раздражения до объективных патологических изменений функции органов слуха, центральной нервной системы, сердечно-сосудистой системы, внутренних органов.
Шум замедляет реакцию человека, что способствует возникновению несчастных случаев на производстве. Под воздействием шума снижается внимание, работоспособность. Шум нарушает сон и отдых людей.
Шум с уровнем звукового давления 30..45 дБ привычен для человека и не беспокоит его, до 40..70 дБ – создает дополнительную нагрузку на нервную систему, при длительном воздействии на человека может стать причиной невроза, свыше 80 дБ – приводит к профессиональной тугоухость, свыше 130 дБ – разрыв барабанной перепонки, свыше 160 Дб – вероятен смертельный исход.
Периодическое повышение давления в воздухе по сравнению с атмосферным давлением в невозмущенной среде называется звуковым давлением.
Область слухового восприятия, доступная человеческому уху, ограничивается порогами слышимости и болевого ощущения. Границы этих порогов в зависимости от частоты существенно меняются. Этим объясняется, что высокочастотные звуки более неприятны для человека, чем низкочастотные (при одинаковых уровнях звукового давления).
Органы слуха человека воспринимают звуковые колебания в интервале частот от 16 до 20 000 Гц, зона наибольшей чувствительности слуха находится в области 50-5000 Гц. Колебания с частотой до 16 Гц (инфразвук) и выше 20 000 Гц (ультразвук) не воспринимаются органами слуха человека.
Минимальная сила звука, воспринимаемая ухом, называется порогом слышимости
(Iо= 10 -12 Вт/м 2 ), ему соответствует звуковое давление P0= 2*10 -5 Па.
Порог болевого ощущениянаступает при силе звука, равной 10 2 Вт/м 2 , и соответствующего ему звукового давления – 2*10 2 Па. Как видим, изменения звукового давления слышимых звуков огромны и составляют примерно 10 7 раз. Поэтому для удобства измерения и санитарно-гигиенического нормирования интенсивности звука и звукового давления принимают не абсолютные физические, а относительные единицы, которые представляют собой логарифмы отношений этих величин к условному нулевому уровню, соответствующему порогу слышимости стандартного тона с частотой 1000Гц.
Уровень интенсивности звука L, дБ, определяется по формуле
где I – интенсивность звука, Вт/м 2 ;
I – интенсивность звука, принимаемая за порог слышимости, равная 10 -12 Вт/м 2 .
Так как интенсивность звука пропорциональна квадрату звукового давления, то эту формулу можно записать в виде
P – среднеквадратичное значение звукового давления в точке измерения
P – пороговое звуковое давление, 2∙10 -5 Па
Эти логарифмы отношений называют соответственно уровнями интенсивности звукаили чаще уровнями звукового давления, они выражаются в белах (Б).
Кроме того, для санитарно-гигиенической оценки воздействия шума на организм человека используют такой показатель, как уровень звука, определяемый по шкале А шумомера с размерностью в дБА.
Так как орган слуха человека способен различать изменение уровня интенсивности звука на 0,1Б, то для практического использования удобнее единица в 10 раз меньше — децибел (дБ).
Нормируемыми параметрами непостоянного шума являются:
– Эквивалентные (по энергии) уровень звука, дБА;
– Максимальный уровень звука, дБА (не более 110 дБА).
Эквивалентный (по энергии) уровень звуканепостоянного шума – уровень звука постоянного широкополосного шума, который имеет такое же среднее квадратическое звуковое давление, что и данный непостоянный шум в течение заданного интервала времени.
Максимальный уровень звука – уровень звука, соответствующий максимальному показанию измерительного прибора при включенной необходимой стандартизованной временной характеристике.
Предельно допустимый уровень шума (ПДУ)– уровень, который при ежедневной работе (кроме выходных дней), но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.
3 Способы защиты от вибраций и шума: коллективные и индивидуальные
Методы защиты от вибрациимашин, механизмов и оборудования:
– устранением или снижением действующих переменных сил, вызывающих вибрацию в источнике их возникновения;
Основным направлением по защите персонала от вибраций является автоматизация и механизация производственных процессов. Однако, в тех случаях, когда автоматизация и механизация невозможны, используются следующие методы и средства борьбы с вибрациями.Схема 3, 5
Инфра- и ультразвуки
Схема 6
ПРИЛОЖЕНИЕ К ЛЕКЦИИ №10
Рис. 1 Классификация вибрации по источнику возникновения и способу передачи
Рис.2. Виды воздействия вибрации на организм человека
Рис. 3. Методы и средства защиты от вибрации.
Классификация производственных шумов
Рис. 4. Классификация производственного шума.
Рис. 5. Принципы, методы и средства защиты от шума.
Рис. 6. Ультразвук и инфразвук
Производственный шум
- Основы безопасности жизнедеятельности
- Безопасность, угрозы и опасности
- Принципы, методы и средства обеспечения безопасности
- Система “человек – среда обитания”
- Географическая среда
- Правовые нормативные и организационные основы обеспечения безопасности жизнедеятельности
- Системы восприятия человека
- Ультразвук и инфразвук
Производственный шум
Шум — это совокупность звуков, неблагоприятно воздействующих на организм человека и мешающих его работе и отдыху.
Источниками звука являются упругие колебания материальных частиц и тел, передаваемых жидкой, твердой и газообразной средой.
Скорость звука в воздухе при нормальной температуре составляет приблизительно 340 м/с, в воде -1 430 м/с, в алмазе — 18 000 м/с.
Звук с частотой от 16 Гц до 20 кГц называется слышимый, с частотой менее 16 Гц — инфразвук и более 20 кГц — ультразвук.
Область пространства, в котором распространяются звуковые волны, называется звуковым полем, которое характеризуется интенсивностью звука, скоростью его распространения и звуковым давлением.
Интенсивность звука — это количество звуковой энергии, передаваемой звуковой волной за 1 с через площадку 1 м 2, перпендикулярную направлению распространения звука, Вт/м2.
Звуковое давление — им называется разность между мгновенным значением полного давления, создаваемого звуковой волной и средним давлением, которое наблюдается в невозмущенной среде. Единица измерения — Па.
Порог слуха молодого человека в диапазоне частот от 1 000 до 4 000 Гц соответствует давлению 2× 10-5 Па. Наибольшее значение звукового давления, вызывающего болезненные ощущения, называется порогом болевого ощущения и составляет 2× 102 Па. Между этими значениями лежит область слухового восприятия.
Интенсивность воздействия шума на человека оценивается уровнем звукового давления (L), который определяется как логарифм отношения эффективного значения звукового давления к пороговому. Единица измерения — децибел, дБ.
На пороге слышимости при среднегеометрической частоте 1 000 Гц уровень звукового давления равен нулю, а на пороге болевого ощущения — 120-130 дБ.
Окружающие человека шумы имеют разную интенсивность: шепот — 10-20 дБА, разговорная речь — 50-60 дБА, шум от двигателя легкового автомобиля — 80 дБА, а от грузового — 90 дБА, шум от оркестра — 110-120 дБА, шум при взлете реактивного самолета на расстоянии 25 м — 140 дБА, выстрел из винтовки — 160 дБА, а из тяжелого орудия — 170 дБА.
Виды производственного шума
Шум, в котором звуковая энергия распределена по всему спектру, называется широкополосным; если прослушивается звук определенной частоты, шум называется тональным; шум, воспринимаемый как отдельные импульсы (удары), называется импульсным.
В зависимости от характера спектра шумы разделяются на низкочастотные (максимальное звуковое давление меньше 400 Гц), среднечастотные (звуковое давление в пределах 400-1000 Гц) и высокочастотные (звуковое давление больше 1000 Гц).
В зависимости от временных характеристик шумы разделяются на постоянные и непостоянные.
Непостоянные шумы бывают колеблющимися по времени, уровень звука которых непрерывно изменяется во времени; прерывистыми, уровень звука которых резко падает до уровня фонового шума; импульсными, состоящими из сигналов менее 1 с.
В зависимости от физической природы шумы могут быть:
- механическими – возникающими при вибрации поверхностей машин и при одиночных или периодических ударных процессах (штамповка, клепка, обрубка и т.п.);
- аэродинамическими — шумы вентиляторов, компрессоров, двигателей внутреннего сгорания, выпусков пара и воздуха в атмосферу;
- электромагнитными – возникающими в электрических машинах и оборудовании за счет магнитною поля, обусловленного электрическим током;
- гидродинамическими – возникающими вследствие стационарных и нестационарных процессов в жидкостях (насосы).
В зависимости от характера действия шумы делятся на стабильные, прерывистые и воющие; последние два особенно неблагоприятно действуют на слух.
Шум создается одиночными или комплексными источниками, находящимися снаружи или внутри здания, — это прежде всего транспортные средства, техническое оборудование промышленных и бытовых предприятий, вентиляторные, газотурбокомпрессорные установки, санигарно-техническое оборудование жилых зданий, трансформаторы.
В производственной сфере шумы наиболее распространены в промышленности и сельском хозяйстве. Значительный уровень шума наблюдается в горнорудной промышленности, машиностроении, лесозаготовительной и деревообрабатывающей, текстильной промышленности.
Воздействие шума на организм человека
Шум, возникающий при работе производственного оборудования и превышающий нормативные значения, воздействует на центральную и вегетативную нервную систему человека, органы слуха.
Шум воспринимается весьма субъективно. При этом имеет значение конкретная ситуация, состояние здоровья, настроение, окружающая обстановка.
Основное физиологическое воздействие шума заключается в том, что повреждается внутреннее ухо, возможны изменения электрической проводимости кожи, биоэлектрической активности головного мозга, сердца и скорости дыхания, общей двигательной активности, а также изменения размера некоторых желез эндокринной системы, кровяного давления, сужение кровеносных сосудов, расширение зрачков глаз. Работающий в условиях длительного шумового воздействия испытывает раздражительность, головную боль, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, нарушение сна. В шумном фоне ухудшается общение людей, в результате чего иногда возникает чувство одиночества и неудовлетворенности, что может привести к несчастным случаям.
Длительное воздействие шума, уровень которого превышает допустимые значения, может привести к заболеванию человека шумовой болезнью — нейросенсорная тугоухость. На основании всего выше сказанного шум следует считать причиной потери слуха, некоторых нервных заболеваний, снижения продуктивности в работе и некоторых случаях потери жизни.
Гигиеническое нормирование шума
Основная цель нормирования шума на рабочих местах — это установление предельно допустимого уровня шума (ПДУ), который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.
Допустимый уровень шума — это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.
Предельно допустимые уровни шума на рабочих местах регламентированы СН 2.2.4/2.8.562-96 “Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки”, СНиП 23-03-03 “Защита от шума”.
Мероприятия по защите от шума
Защита от шума достигается разработкой шумобезопасной техники, применением средств и методов коллективной защиты, а также средств индивидуальной защиты.
Разработка шумобезопасной техники — уменьшение шума в источнике — достигается улучшением конструкции машин, применением малошумных материалов в этих конструкциях.
Наиболее эффективным средством снижения шума является замена шумных технологических операций малошумными или полностью бесшумными, однако этот путь борьбы с шумом не всегда возможен, поэтому большое значение имеет снижение шума в источнике — путем совершенствования конструкции или схемы той части оборудования, которая производит шум, использования в конструкции материалов с пониженными акустическими свойствами, оборудования на источнике шума дополнительного звукоизолирующего устройства или ограждения, расположенного по возможности ближе к источнику.
Средства и методы коллективной защиты подразделяются на акустические, архитектурно-планировочные, организационно-технические.
Защита от шума акустическими средствами предполагает:
- звукоизоляцию (устройство звукоизолирующих кабин, кожухов, ограждений, установку акустических экранов);
- звукопоглощение (применение звукопоглощающих облицовок, штучных поглотителей);
- глушители шума (абсорбционные, реактивные, комбинированные).
Архитектурно-планировочные методы — рациональная акустическая планировка зданий; размещение в зданиях технологического оборудования, машин и механизмов; рациональное размещение рабочих мест; планирование зон движения транспорта; создание шумозащищенных зон в местах нахождения человека.
Организационно-технические мероприятия — изменение технологических процессов; устройство дистанционного управления и автоматического контроля; своевременный планово-предупредительный ремонт оборудования; рациональный режим труда и отдыха.
Если невозможно уменьшить шум, действующий на работников, до допустимых уровней, то необходимо использовать средства индивидуальной защиты (СИЗ) — противошумные вкладыши из ультратонкого волокна “Беруши” одноразового использования, а также противошумные вкладыши многократного использования (эбонитовые, резиновые, из пенопласта) в форме конуса, грибка, лепестка. Они эффективны для снижения шума на средних и высоких частотах на 10-15 дБА. Наушники снижают уровень звукового давления на 7-38 дБ в диапазоне частот 125-8 000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, оголовья, каски, которые снижают уровень звукового давления на 30-40 дБ в диапазоне частот 125-8 000 Гц.
См.также
Защита от производственного шума
Основные мероприятия по борьбе с шумом — это технические мероприятия, которые проводятся потрем главным направлениям:
- устранение причин возникновения шума или снижение его в источнике;
- ослабление шума на путях передачи;
- непосредственная защита работающих.
Наиболее эффективным средством снижения шума является замена шумных технологических операций малошумными или полностью бесшумными, однако этот путь борьбы с шумом не всегда возможен, поэтому большое значение имеет снижение шума в источнике — путем совершенствования конструкции или схемы той части оборудования, которая производит шум, использования в конструкции материалов с пониженными акустическими свойствами, оборудования на источнике шума дополнительного звукоизолирующего устройства или ограждения, расположенного по возможности ближе к источнику.
Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух, закрывающий отдельный шумный узел машины.
Значительный эффект снижения шума от оборудования дает применение акустических экранов, отгораживающих шумный механизм от рабочего места или зоны обслуживания машины.
Применение звукопоглощающих облицовок для отделки потолка и стен шумных помещений (рис. 1) изменяет спектр шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.
Рис. 1. Акустическая обработка помещений: а — звукопоглощающие облицовки; б — штучные звукопоглощатели; 1 — защитный перфорированный слой; 2 — звукопоглощающий материал; 3 — защитная стеклоткань; 4 — стена или потолок; 5 — воздушный промежуток; 6 — плита из звукопоглощающего материала
Для снижения аэродинамического шума применяют глушители, которые принято делить на абсорбционные, использующие облицовку поверхностей воздуховодов звукопоглощающим материалом: реактивные типа расширительных камер, резонаторов, узких отростков, длина которых равна 1/4 длины волны заглушаемого звука: комбинированные, в которых поверхности реактивных глушителей облицовывают звукопоглощающим материалом; экранные.
Учитывая, что с помощью технических средств в настоящее время не всегда удается решить проблему снижения уровня шума, большое внимание должно уделяться применению средств индивидуальной защиты: наушников, вкладышей, шлемов, защищающих ухо от неблагоприятного действия шума. Эффективность средств индивидуальной защиты может быть обеспечена их правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.
Действие шума на организм человека. Гигиеническая оценка и нормирование шума.
Шум– беспорядочное сочетание звуков различной частоты и интенсивности; совокупность звуков различной интенсивности и частоте звуков беспорядочно изменяющихся во времени.
В современном мире борьба с шумами является одной из актуальнейших среди проблем оздоровления окружающей среды. В крупных городах шум является одним из основных физических факторов, формирующих условия среды обитания.
Рост промышленного и жилищного строительства, бурное развитие различных видов транспорта, все большее применение в жилых и общественных зданиях сантехнического и инженерного оборудования, бытовой техники привели к тому, что уровни шума в селитебных зонах города стали сравнимы с уровнями шумов на производстве.
По происхождению шум может быть механическим, аэрогидродинамическим и электромагнитным.
Механический шум возникает в результате ударов в сочленяющихся частях машин, их вибрации, что имеет место при механической обработке деталей, в зубчатых передачах, в подшипниках качения и т.п. Мощность звукового излучения поверхности, совершающей колебания, зависит от интенсивности колебаний вибрирующих поверхностей, из размеров, формы, способов крепления и др.
Аэрогидродинамический шум появляется в результате пульсации давления в газах при их движении в трубопроводах и каналах (турбомашины, насосные агрегаты, вентиляционные системы, компрессоры и т.п.).
Электромагнитный шум является результатом растяжения и изгиба ферромагнитных материалов при воздействии на них переменных электромагнитных полей (электрических машин, трансформаторов, дросселей и т.п.).
Человек с точки зрения воздействия на него шума является достаточно ранимым существом. Воздействие шума на человека проявляется от субъективного раздражения до объективных патологических нарушений функции органов слуха, центральной 155 нервной системы, сердечно-сосудистой системы, внутренних органов.
Шум замедляет реакцию человека, что способствует возникновению несчастных случаев на производстве. Под воздействием шума снижается внимание, работоспособность.
Шум нарушает сон и отдых людей. Ночной шум даже на уровне 40 дБ может привести к бессонице человека и неврозам. Постоянные шумы в дневное время на уровне 60 – 70 дБ и выше ведут к развитию раздражительности, рассеянности, сердечно-сосудистых заболеваний, повышению давления и уровня травматизма.
При уровне шума 120 – 130 дБ человек испытывает болевые ощущения органов слуха, что ведет со временем к акустической травме. Шум на уровне 186 дБ приводит к разрыву барабанных перепонок, а при воздействии 196 дБ – к отслоению легочной ткани человека.
В промышленности, сельском хозяйстве и на транспорте имеется множество профессий, которые связаны с воздействием производственного шума. Немаловажное значение имеет и бытовой шум (бытовая техника, вентиляционные установки, лифты и др.).
Шум (с гигиенической точки зрения) — это комплекс беспорядочно сочетающихся звуков различной частоты и интенсивности, неблагоприятно воздействующих на организм человека.
Шум (с акустической точки зрения) — это механические волновые колебания частиц упругой среды с малыми амплитудами, возникающие под действием какой-либо появляющейся силы.
Колебания частиц среды условно называются «звуковыми волнами». Зона слышимых или собственно звуковых колебаний находится в преде-
лах 16 Гц–20кГц. Акустические колебания с частотой ниже 16 Гц называются «инфразвуками», от 2·104 до 109 Гц — «ультразвуками», выше 109 Гц — «гиперзвуками». Весь звуковой диапазон разбит на восемь октав со следующими среднегеометрическими частотами 31,5; 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Минимальная энергия колебания, способная вызвать ощущение слышимого звука, называется «порогом слышимости» (или порогом восприятия). При частоте 1000 Гц он равен10–12 Вт/м2. В акустике вместо шкалы абсолютных величин интенсивности звука и звукового давления пользуются относительной логарифмической шкалой (шкалой децибел). Она выражается в белах (Б) или децибелах (дБ) и укладывается в пределы от0–140дБ(0–14Б).
Децибел — условная единица, которая показывает данный звук в логарифмических значениях больше порога слышимости. Децибел (дБ) — математическое понятие, служит для сравнения двух одноименных величин, независимо от их природы.
По частотной характеристике различают шумы низкочастотные (16–350Гц), среднечастотные(350–800Гц), высокочастотные (более 800 Гц).
Основным нормируемым параметром (характеристикой) постоянного шума на рабочем месте являются октавные уровни звуковых давлений в дБ. Правилами допускается использование уровня звука в дБА при ориентировочной оценке акустических условий.
Гигиеническая оценка шума на рабочих местах или в жилой зоне осуществляется на основании измерения или акустического расчета (при прогнозировании шумовой обстановки) количественных характеристик шума в контрольных точках и сравнения их уровней с допустимыми.
Нормируемыми параметрами постоянного шума на рабочих местах и в помещениях жилых, общественных зданий и на территории жилой застройки являются:
−уровни звукового давления, выражающиеся в децибелах (дБ) среднеквадратичных давлений в 9 октавных полосах частот со среднегеометрически-
ми частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц;
−уровни звука, измеряемого по шкале А шумомера в дБА. Шкала А имеет частотную коррекцию, соответствующую чувствительности человеческого уха.
Нормируемыми параметрами непостоянного шума являются: эквивалентный (по энергии) уровень звука в дБА и максимальный уровень звука в дБА.
Предельно допустимый уровень (ПДУ) шума — это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 ч в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.
Предельно допустимые уровни шума составляют:
На производстве в зависимости от вида трудовой деятельности уровни звука и эквивалентные уровни звука колеблются в пределах 50–80дБА.
Допустимый уровень шума — это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.
Приборы для измерения шума: шумомеры типа ВШВ,ВШ-2000,фирмы «Брюль», «Къер» (Дания), РТ (Германия), «Октава» (Россия).
Устройство шумомера: воспринимающее устройство — микрофон, который преобразует звуковое колебание в электрическое напряжение. Все типы шумомеров имеют три частотные характеристики: А, В, С (на практике пользуются частотной характеристикой А). Результаты измерений называют условно уровнем звука, а измеренные децибелы — децибелами А (дБА).
При измерении микрофон шумомера ориентируется в направлении источника шума на высоте 1,5 м над уровнем пола (если работа выполняется стоя) или на высоте головы человека (при выполнении работы сидя) и удален не менее чем на 0,5 м от человека, производящего измерение.
При измерении постоянного шума (если уровень звука изменяется во времени не более чем на 5 дБА) его замеры проводят в каждой точке не менее 3 раз.
Расчет уровней шума (октавных уровней звукового давления) на рабочих местах при наличии одного источника осуществляется по следующим формулам:
а) в зоне прямого и отраженного звука
б) в зоне прямого звука
в) в зоне отраженного звука:
,
где Lw – октавный уровень звуковой мощности, дБ ( o w w w L =10 lg , дБ, где w – 159 звуковая мощность источника, Вт; wo – опорная звуковая мощность, равная 10- 12 Вт); K – коэффициент, учитывающий влияние ближнего акустического поля (определяется по графику), зависит от расстояния между акустическим центром и контрольной точкой (местом измерения); S – площадь воображаемой поверхности правильной геометрической формы, окружающей источник, м2 ; B – постоянная помещения, м2 , определяется в зависимости от объема помещения (V), коэффициента отражения ограждающих поверхностей (α), (B = α ⋅ A), где А – эквивалентная площадь звукопоглощения, м2 , A = α ⋅ S или A =V T , где S – площадь ограждающих поверхностей, α – коэффициент звукопоглощения этих поверхностей, Т – время реверберации данного помещения, с. ψ – коэффициент, учитывающий нарушение диффузности поля; Ф – фактор направленности источника шума.
При наличии в помещении нескольких (n) источников шума с различными шумовыми характеристиками ( Lw ,Ф,ПН – показатель направленности, определяемый как ПН =10lgФ ) общий октавный уровень звукового давления ( LΣ) определяется по формуле:
Если в помещении имеется n источников шума с одинаковыми шумовыми характеристиками, то суммарный октавный уровень звукового давления можно определить из выражения: