1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Амитоз: его виды и значение. Амитоз, его механизмы и биологическое значение Амитоз представляет собой деление клеток при котором

Амитоз, его механизмы и биологическое значение.

Амитоз (прямое деление клетки), происходит в соматических клетках эукариот реже, чем митоз. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

35. Проблемы клеточной пролиферации в медицине.

Основной способ деления тканевых клеток — это митоз. По мере увеличения числа клеток возникают клеточные группы, или популяции, объединенные общностью локализации в составе зародышевых листков (эмбриональных зачатков) и обладающие сходными гистогенетическими потенциями. Клеточный цикл регулируется многочисленными вне- и внутриклеточными механизмами. К внеклеточным относятся влияния на клетку цитокинов, факторов роста, гормональных и нейрогенных стимулов. Роль внутриклеточных регуляторов играют специфические белки цитоплазмы. В течение каждого клеточного цикла существуют несколько критических точек, соответствующих переходу клетки из одного периода цикла в другой. При нарушении внутренней системы контроля клетка под влиянием собственных факторов регуляции элиминируется апоптозом, либо на некоторое время задерживается в одном из периодов цикла.

36. Биологическая роль и общая характеристика прогенеза.

Процесс созревания половых клеток до достижения организмом взрослого состояния; в частности, Прогенез всегда сопровождает неотению. Зрелые половые клетки, в отличие от соматических, содержат одиночный (гаплоидный) набор хромосом. Все хромосомы гаметы, за исключением одной половой, называются аутосомами. В мужских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках — только хромосома Х, Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению.Прогенез включает в себя сперматогенез и овогенез.

Амитоз, его механизмы и биологическое значение.

Амитоз – прямое деление клетки, при котором ядро находится в интерфазном состоянии. Хромосомы не выявляются. Веретено деления не образуется. Амитоз приводит к появлению двух клеток, но часто возникают двуядерные и многоядерные клетки.

Амитотическое деление начинается с изменения формы и числа ядрышек. Крупные ядрышки делятся перетяжкой. Вслед за делением ядрышек происходит деление ядра. Ядро может делиться перетяжкой, образуя два ядра. В других случаях имеет место множественное разделение ядра, его фрагментация. Ядра могут быть неравной величины.

Амитотические деления характерны для клеток, заканчивающих развитие: отмирающих эпителиальных клеток, фолликулярных клеток яичников и т. д. Встречается амитоз при патологических процессах: воспалении, злокачественном росте и др. После амитоза клетки не способны приступить к митотическому делению.

Проблемы клеточной пролиферации в медицине.

Пролиферация — новообразование клеток и внутриклеточных структур (митохондрий, эндоплазматической сети, рибосом и др.). Лежит в основе роста и дифференцировки тканей, обеспечивает непрерывное обновление структур организма.

С начала 60-х гг. появились новые взгляды на значение для старения и продолжительности жизни закономерностей клеточной пролиферации. На основании подсчета числа делений фибробластов, высеваемых в культуру ткани от эмбриона человека и от людей в возрасте 20 лет и выше, было сделано заключение о пределе клеточных делений (лимит Хейфлика), которому соответствует видовая длительность жизни. Показано, что фибробласты мыши способны удваивать свою численность 14—28 раз, цыпленка —15—35, человека—40—60, черепахи—72—114 раз. Проверка результатов, о которых идет речь, выявила, что представление об ограниченности числа клеточных делений в индивидуальном развитии является неточным.

Биологическая роль и общая характеристика прогенеза.

Прогенез (гаметогенез) — развитие и созревание половых клеток. Сперматозоиды образуются в результате сперматогенеза, яйцеклетки – в результате овогенеза.

Клетки зачаткового эпителия половых желез делятся последовательно митозом и мейозом. В результате этих делений образуется мужские и женские гаметы. Они имеют гаплоидный набор хромосом и содержат наследственную информацию, необходимую для развития организма.

Фазы сперматогенеза.

Сперматогенез – образование мужских половых клеток (сперматозоидов) – осуществляется в стенках извитых канальцев семенника. 4 периода:

1 – Размножение. Наружный слой клеток стенок канальцев семенника содержит диплоидный набор хромосом. Клетки делятся митозом. Их число увеличивается. Образуются незрелые половые клетки — сперматогонии. Они имеют округлую форму и крупное ядро. Сперматогонии перемещаются в зону роста, расположенную ближе к просвету канальца.

2 – Рост. Клетки увеличиваются в размерах и называются сперматоцитами 1-го порядка.

3 — Созревание. С наступлением половой зрелости сперматоциты постепенно претерпевают мейотические деления. В этом периоде происходят два мейотических деления. Каждый сперматоцит 1-го порядка в результате 1-го мейотического деления образует два сперматоцита 2-го порядка с гаплоидным набором хромосом. После второго мейотического деления возникают еще по две сперматиды. Это овальные клетки небольших размеров.

4 – Формирования. Сперматиды перемещаются ближе к просвету канальца. Из сперматид формируются сперматозоиды определенного строения, способные к передвижению. Хвосты сперматозоидов направлены в просвет канальца. Таким образом, из одного сперматогония формируются 4 зрелых сперматозоида, которые выходят в просвет семенного канальца.

Сперматогенез регулируется гормонами.

Фазы овогенеза.

Овогенез – процесс развития женских половых клеток (яйцеклеток), во время которого клетки яичника – овогонии – превращаются в яйцеклетки.

1 период – размножение. Заканчивается до рождения девочки. Клетки зачаткового эпителия делятся митозом и образуют овогонии.

2 период – рост. Образуются овоциты 1-ого порядка, которые до полового созревания остаются на стадии профазы 1-го мейотического деления. С наступление половой зрелости каждый месяц один из овоцитов 1-го порядка увеличивается в размерах, окружается фолликулярными клетками, обеспечивающими питание.

3 период – созревание. Овоцит 1-го порядка заканчивает 1-ое мейотическое деление и образуется один овоцит 2-го порядка и полярное (редукционное) тельце, 2-ое деление мейоза идет до стадии метафазы. На этой стадии овоцит 2-го порядка выходит из яичника в брюшную полость, а оттуда попадает в яйцевод. Дальнейшее созревание не произойдет, пока овоцит не соединится со сперматозоидом. В яйцеводах овоцит 2-го порядка заканчивает 2-ое деление мейоза, образуя овотиду – крупную клетку и второе полярное тельце. Таким образом из одной овогонии образуется одна овотида и 3 полярных тельца.

Период формирования отсутствует. Процесс регулируется гормонами. Если оплодотворение не произойдет, овоцит 2-го порядка погибнет и будет выведен из организма.

Амитоз. Его типы и биологическое значение

Амитоз – прямое деление клеток. Амитоз встречается у эукариот достаточно редко. При амитозе ядро начинает делиться без видимых предварительных изменений. При этом не обеспечивается равномерное распределение генетического материала между дочерними клетками. Иногда при амитозе не происходит цитокинеза, то есть деления цитоплазмы, и тогда образуется двухъядерная клетка.

Рисунок – амитоз в клетках

Если же все-таки произошло деление цитоплазмы, то велика вероятность того, что обе дочерние клетки будут неполноценными. Амитоз чаще встречается в опухолевых или отмеряющих тканях.

При амитозе, в отличие от Митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки — цитотомии, как правило, не происходит; обычно амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Читать еще:  Что делать если вышла грыжа. Почему развивается и как проявляется грыжа живота у взрослых и детей

Рисунок – Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Изучение амитоза осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно амитоз следует за Эндомитозом. В большинстве случаев при амитозе делится только ядро и возникает двуядерная клетка; при повторных амитозах. могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки — результат амитоза. (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы.

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Дву- и многоядерные клетки отличаются от одноядерных диплоидных большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток дву- и многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об амитозе как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму.

Во время амитоза клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём амитоза. Представления об амитозе как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать амитоз как внутриклеточную регулятивную реакцию.

Все случаи, когда происходит редупликация хромосом или репликация ДНК, но не наступает митоз, называются эндорепродукциями. Клетки становятся полиплоидными.

Как постоянный процесс эндорепродукция наблюдается в клетках печени, эпителия мочевыводящих путей млекопитающих. В случае эндомитоза хромосомы после редупликации становятся видны, но ядерная оболочка не разрушается.

Если делящиеся клетки на некоторое время охладить или обработать их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином), то деление клеток прекратится. При этом исчезнет веретено, а хромосомы без расхождения к полюсам будут продолжать цикл своих превращений: они начнут набухать, одеваться ядерной оболочкой. Так возникают за счет объединения всех неразошедшихся наборов хромосом крупные новые ядра. Они, естественно, будут содержать вначале 4п число хроматид и соответственно 4с количество ДНК. По определению, это уже не диплоидная, а тетраплоидная клетка. Такие полиплоидные клетки могут из стадии G1 переходить в S-период и, если убрать колхицин, снова делиться митотическим путем, давая уже потомков с 4 n числом хромосом. В результате можно получить полиплоидные клеточные линии разной величины плоидности. Этот прием часто используется для получения полиплоидных растений.

Как оказалось, во многих органах и тканях нормальных диплоидных организмов животных и растений встречаются клетки с крупными ядрами, количество ДНК в которых кратно больше 2 n. При делении таких клеток видно, что количество хромосом у них также кратно увеличено по сравнению с обычными диплоидными клетками. Эти клетки являются результатом соматической полиплоидии. Часто это явление называют эндорепродукцией — появление клеток с увеличенным содержанием ДНК. Появление подобных клеток происходит в результате отсутствия в целом или незавершенности отдельных этапов митоза. Существует несколько точек в процессе митоза, блокада которых приведет к его остановке и к появлению полиплоидных клеток. Блок может наступить при переходе от С2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто происходит нарушение целостности веретена деления. Наконец, нарушения цитотомии также могут прекратить деление, что приведет к появлению двуядерных и полиплоидных клеток.

При естественной блокаде митоза в самом его начале, при переходе G2 — профазы, клетки приступают к следующему циклу репликации, который приведет к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме их больших размеров. При увеличении ядер в них не выявляются хромосомы митотического типа. Часто такой тип эндорепродукции без митотической конденсации хромосом встречается у беспозвоночных животных, обнаруживается он также и у позвоночных животных, и у растений. У беспозвоночных в результате блока митоза степень полиплоидии может достигать огромных значений. Так, в гигантских нейронах моллюска тритонии, ядра которых достигают величины до 1 мм (!), содержится более 2-105 гаплоидных наборов ДНК. Другим примером гигантской полиплоидной клетки, образовавшейся в результате редупликации ДНК без вступления клеток в митоз, может служить клетка шелкоотделительной железы тутового шелкопряда. Ее ядро имеет причудливую ветвистую форму и может содержать огромные количества ДНК. Гигантские клетки железы пищевода аскариды могут содержать до 100000с ДНК.

Особый случай эндорепродукции представляет собой увеличение плоидности путем политении. При политении в S-периоде при репликации ДИК новые дочерние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следующий цикл репликации, снова удваиваются и не расходятся. Постепенно в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура хромосомы интерфазного ядра. Последнее обстоятельство необходимо подчеркнуть, так как такие гигантские политенные хромосомы никогда не участвуют в митозе, более того — это истинно интерфазные хромосомы, участвующие в синтезе ДНК и РНК. От митотических хромосом они резко отличаются и по размерам: в несколько раз толще митотических хромосом из-за того, что состоят из пучка множественных неразошедшихся хроматид — по объему политенные хромосомы дрозофилы в 1000 раз «больше митотических. Они в 70-250 раз длиннее митотических из-за того, что в интерфазном состоянии хромосомы менее конденсированы (спирализованы), чем митотические хромосомы. Кроме того, у двукрылых их общее число в клетках равно гаплоидному из-за того, что при политенизации происходит объединение, конъюгация гомологичных хромосом. Так, у дрозофилы в диплоидной соматической клетке 8 хромосом, а в гигантской клетке слюнной железы — 4. Встречаются гигантские полиплоидные ядра с политенными хромосомами у некоторых личинок двукрылых насекомых в клетках слюнных желез, кишечника, мальпигиевых сосудов, жирового тела и т.д. Описаны политенные хромосомы в макронуклеусе инфузории стилонихии. Лучше всего этот тип эндорепродукции изучен у насекомых. Было подсчитано, что у дрозофилы в клетках слюнных желез может произойти до 6-8 циклов редупликации, что приведет к общей плоидности клетки, равной 1024. У некоторых хирономид (их личинку называют мотылем) плоидность в этих клетках достигает 8000-32000. В клетках политенные хромосомы начинают быть видны после достижения политении в 64-128 п, до этого такие ядра ничем, кроме размера, не отличаются от окружающих диплоидных ядер.

Отличаются политенные хромосомы и своим строением: они структурно неоднородны по длине, состоят из дисков, междисковых участков и пуфов. Рисунок расположения дисков строго характерен для каждой хромосомы и отличается даже у близких видов животных. Диски представляют собой участки конденсированного хроматина. Диски могут отличаться друг от друга по толщине. Общее их число у политенных хромосом хирономид достигает 1,5-2,5 тыс. У дрозофилы имеется около 5 тыс. дисков. Диски разделены междисковыми пространствами, состоящими, так же как и диски, из фибрилл хроматина, только более рыхла упакованных. На политенных хромосомах двукрылых часто видны вздутия, пуфы. Оказалось, что пуфы возникают на местах некоторых дисков за счет их деконденсации и разрыхления. В пуфах выявляется РНК, которая там же и синтезируется. Рисунок расположения и чередования дисков на политенных хромосомах постоянен и не зависит ни от органа, ни от возраста животного. Это является хорошей иллюстрацией одинаковости качества генетической информации в каждой клетке организма. Пуфы являются временными образованиями на хромосомах, и в процессе развития организма существует определенная последовательность в их появлении и исчезновении на генетически различных участках хромосомы. Эта последовательность различна для разных тканей. Сейчас доказано, что образование пуфов на политенных хромосомах — это выражение генной активности: в пуфах синтезируются РНК, необходимые для проведения белковых синтезов на разных этапах развития насекомого. В естественных условиях у двукрылых особенно активны в отношении синтеза РНК два самых крупных пуфа, так называемые кольца Бальбиани, который описал их 100 лет тому назад.

Читать еще:  Как называется препарат витаминов группы. Комплекс витамин группы В в таблетках: перечень и названия препаратов, особенности применения при церебральных осложнениях на фоне заболеваний позвоночника. Отзывы об «Ангиовит»

В других случаях эндорепродукции полиплоидные клетки возникают в результате нарушений аппарата деления — веретена: при этом происходит митотическая конденсация хромосом. Такое явление носит название эндомитоз, потому что конденсация хромосом и их изменения происходят внутри ядра, без исчезновения ядерной оболочки. Впервые явление эндомитоза было хорошо изучено в клетках: различных тканей водяного клопа — геррии. В начале эндомитоза хромосомы конденсируются, благодаря чему становятся хорошо различимы внутри ядра, затем хроматиды обособляются, вытягиваются. Эти стадии по состоянию хромосом могут соответствовать профазе и метафазе обычного митоза. Затем хромосомы в таких ядрах исчезают, и ядро принимает вид обычного интерфазного ядра, но размер его увеличивается в соответствии с увеличением плоидности. После очередной редупликации ДНК такой цикл эндомитоза повторяется. В результате могут возникнуть полиплоидные (32 п) и даже гигантские ядра. Сходный тип эндомитоза описан при развитии макронуклеусов у некоторых инфузорий, у целого ряда растений.

Результат эндорепродукции: полиплоидия и увеличение размеров клетки.

Значение эндорепродукции: не прерывается деятельность клетки. Так, например, деление нервных клеток привело бы к временному выключению их функций; эндорепродукция позволяет без перерыва в функционировании нарастить клеточную массу и тем самым увеличить объем работы, выполняемый одной клеткой.

Амитоз: его виды и значение

Особенности увеличения скорости исследования клеточной фрагментации во время усовершенствования микроскопа в 1830-х годах. Морфологическое сохранение интерфазного состояния ядра с помощью амитоза. Характеристика основных видов прямого деления клетки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Амитоз: его виды и значение

1. Амитоз: понятие и сущность

Термин «клетка» впервые употребил Роберт Гук в 1665 году при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы. В 1838—1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории — самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц — клеток, каждая из которых обладает всеми свойствами живого.

Важнейшим дополнением клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

В 1870-х годах были открыты два способа деления клетки эукариот, впоследствии названные митоз и мейоз. Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом хромосом также удваивается. но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом — кариотип — одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитолоогические открытия легли в основу хромосомной теории наследственности.

1. Амитоз: понятие и сущность

Амитоз (или прямое деление клетки), происходит в соматических клетках эукариот реже, чем митоз. Впервые он описан немецким биологом Р. Ремаком в 1841г., термин предложен гистологом В. Флеммингом позднее — в 1882г. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует.

Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Это понятие ещё фигурировало в некоторых учебниках до 1980-х гг. В настоящее время считается, что все явления, относимые к амитозу — результат неверной интерпретации недостаточно качественно приготовленных микроскопических препаратов, или интерпретации как деления клетки явлений, сопровождающих разрушение клеток или иные патологические процессы. В то же время некоторые варианты деления ядер эукариот нельзя назвать митозом или мейозом. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретена происходит сегрегация коротких фрагментов хромосом.

Амитоз— (от греч. а — отриц. част, и mitos — нить; син.: прямое деление, фрагментация) . Так называют особую форму клеточного деления, отличающуюся от обычного митоза (деления с волокнистым метаморфозом ядра) своей простотой. По определению Flemming’a, установившего эту форму (1879 г.), «амитоз есть такая форма деления клетки и ядра, при которой отсутствуют образование веретена и правильно оформленных хромосом и перемещение последних в определенном порядке».

Ядро, не изменяя своего характера, прямо или после предварительного разделения ядрышка, распадается на две части путем перешнурования или образования односторонней складки. За делением ядра в некоторых случаях делится и тело клетки, также путем перешнурования и расщепления. Иногда ядро распадается на несколько частей равной или неравной величины. А. был описан во всех органах и тканях как у позвоночных, так и беспозвоночных; одно время думали, что простейшие делятся исключительно прямым путем, но ошибочность этого взгляда вскоре была доказана. Главным признаком для констатирования А. служило нахождение двуядерных клеток, а на ряду с ними—и клеток с большими ядрами, обнаруживающими складки и перехваты; амитотическое деление клеточного тела наблюдалось чрезвычайно редко, о нем приходилось заключать на основании косвенных соображений.—

По вопросу о сущности и значении А. были высказаны различные воззрения:

1. А. есть первичный и простейший способ деления (Strassburger, Waldeyer, Car-поу); он происходит, напр., при заживлении ран, когда клетки «не успевают» делиться митозом (Balbiani, Henneguy), наблюдается иногда у зародышей (Максимов). фрагментация интерфазный амитоз клетка

Читать еще:  Линкомицин аналоги и цены. Линкомицин аналоги нового поколенияЛечение][

2. А. есть ненормальный способ деления, происходит при условиях патологических, в отживающих тканях, иногда в клетках при усиленной секреции и ассимиляции и знаменует собой конец делений; клетки после А. не могут уже делиться ми-тотически, поэтому А. не имеет регенеративного значения (Flemming, Ziegler, Rath).

3. А. не представляет собой способа размножения клетки; в одной части случаев А. происходит простое распадение ядра под влиянием физико-механических моментов (давление, пережимание клетки чем-либо, образование и углубление складок вследствие изменения осмотического давления ядра), в других случаях, описанных как А., имеет место абортивный (не дошедший до конца) митоз; смотря по стадии, на к-рой обрывается митоз, получаются клетки с большим перешнурованным ядром или двуядерные (Карпов).’— За последние два десятилетия вопрос об А. дебатируется реже, при чем высказываются все три взгляда: т. о., единства во взглядах на А. не достигнуто.

При амитозе веретено деления не образуется и хромосомы в световом микроскопе неразличимы. Такое деление встречается у одноклеточных организмов (например, так делятся большие полиплоидные ядра инфузорий), а также в некоторых высокоспециализированных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель клетках растений и животных либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме семян, стенках завязи пестика и паренхиме черешков листьев. У животных и человека такой тип деления характерен для клеток печени, хрящей, роговицы глаза.

При амитозе часто наблюдается только деление ядра: в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуществляется произвольно.

Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны.

При Амитоз, в отличие от митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки — цитотомии, как правило, не происходит (рис.); обычно Амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Рис 2 Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Изучение Амитоз осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает Амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно Амитоз следует за эндомитозом. В большинстве случаев при Амитоз делится только ядро и возникает двуядерная клетка; при повторных Амитоз могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки — результат Амитоз (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы (см. Полиплоидия).

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Двуи многоядерные клетки отличаются от одноядерных диплоидных (см. Диплоид) большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток двуи многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об Амитоз как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму. Во время Амитоз клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях Амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно Амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём Амитоз Представления об Амитоз как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на Амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать Амитоз как внутриклеточную регулятивную реакцию.

Амитоз — прямое деление клетки (ядра). При этом происходит перешнуровывание или фрагментация ядра без выявления хромосом и образования веретена деления. Одной из форм амитоза может быть сегрегация геномов — множественное перешнуровывание полиплоидного ядра с образованием мелких дочерних ядер.

Сегрегация — процесс расхождения хромосом в митозе или мейозе. Сегрегация обеспечивает постоянство числа хромосом в клеточных делениях.

Сложность организации генома: «молчащая» ДНК — Значительная часть нуклеотидных последовательностей у эукариот реплицируется, но не транскрибируется вообще, мозаичная структура генов (интроны — участок ДНК, который является частью гена, но не содержит информации о последовательности аминокислот белка, экзоны — это последовательность ДНК, которая представлена в зрелой РНК), мобильные генетические элементы — последовательности ДНК, которые могут перемещаться внутри генома.

Как правило, амитоз встречается в полиплоидных, отживающих или патологически измененных клетках и ведет к образованию многоядерных клеток. В последние годы факт существования амитоза как способа нормальной репродукции клеток отрицается.

В тканях, завершающих свою жизнедеятельность, или в условиях патологии можно наблюдать прямое деление клеток без выявления хромосом в ядре — амитоз. Он характеризуется изменением формы и числа ядрышек с последующей перешнуровкой ядра. Образующиеся при этом двуядерные клетки могут подвергнуться цитотомии.

По физиологическому значению различают три вида амитотического деления:

Генеративный амитоз — полноценное деление клеток, дочерние клетки которых способны в последующем к митотическому делению и к характерному для них нормальному функционированию.

Реактивный амитоз вызывается какими-либо неадекватными воздействиями на организм.

Дегенеративный амитоз — деление, связанное с процессами дегенерации и гибели клеток.

Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно­клеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедея­тельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Деление клетки приводит к образованию из одной материнской клетки двух или многих дочерних. Если деление ядра материнской клетки сразу же сопровождается делением ее цитоплазмы, появляются две дочерние клетки. Но бывает и так: ядро многократно делится, а уже затем вокруг каждого из них обособляется часть цитоплазмы материнской клетки. В этом случае из одной исходной клетки сразу формируется несколько дочерних клеток.

Амитоз, или прямое деление, — это деление интерфазного ядра путем перетяжки без образования веретена деления (хромосомы в световом микроскопе вообще неразличимы). Такое деление встречается у одноклеточных организмов (например, амитозом делятся полиплоидные большие ядра инфузорий), а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

1. Биология / Под ред. Чебышева. Н.В. — М.: ГОУ ВУНМЦ, 2005.

2. Врожденные пороки развития // Серия учебной литературы «Образование медсестер», модуль 10. — М.: Гэотар-мед, 2002.

3.Медицинская генетика / Под ред. Бочкова Н.П. — М.: Мастерство, 2001.

4.Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. — Минск: Высшая школа, 1999.

5.Пособие по биологии для довузовского обучения иностранных учащихся / Под ред. Чернышова В.Н., Елизаровой Л.Ю., Шведовой Л.П.- М.: ГОУ ВУНМЦ МЗ РФ, 2004.

6.Ярыгин В.Н., Волков И.Н. и др. Биология. — М.: Владос, 2001.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector